
1 3

Theor Appl Genet (2013) 126:3021–3034
DOI 10.1007/s00122-013-2190-x

ORIGINAL PAPER

Comparative QTL analysis of early short‑time drought tolerance 
in Polish fodder and malting spring barleys

Magdalena Wójcik‑Jagła · Marcin Rapacz · 
Mirosław Tyrka · Janusz Kościelniak · 
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There was a major QTL for net photosynthetic rate in the 
malting barley located on chromosome 5H and two major 
QTLs for overall photochemical performance (PI) located 
on 5H and 7H. One major QTL related to photochemi-
cal quenching of chlorophyll fluorescence was located on 
chromosome 4H in fodder barley. Three QTL regions were 
common to both mapping populations but the correspond-
ing regions explained different drought-induced traits. One 
region was for QTLs related to PSII photosynthetic activity 
stress index in malting barley, and the corresponding region 
in fodder barley was related to the water content stress 
index. These results are in accordance with previous stud-
ies which showed that different traits were responsible for 
drought tolerance variations in fodder and malting barleys.

Introduction

Drought tolerance is a very important yet problematic 
trait for plant breeders. Difficulties arise from its quantita-
tive nature. Drought tolerance undergoes a very complex 
genetic control involving many genes with small effects 
which are greatly affected by the environment (Mir et  al. 
2012). Because of this, one of the most suitable methods 
for identifying genes that are involved in drought tolerance 
is the use of molecular markers for quantitative trait loci 
(QTLs). The QTLs can then be used to improve the drought 
tolerance of the particular plant. To be able to determine 
QTLs for a desired trait, a genetic linkage map is required. 
Genetic linkage maps are constructed in a four stage pro-
cess: create a mapping population, identify polymor-
phisms, genotype the mapping population and the parents 
with chosen markers, and linkage analysis of the markers 
(Collard et  al. 2005). The most commonly used mapping 
populations consist of 50–250 individuals that originate 
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from a cross between genetically distant parents that differ 
for the analyzed trait (Mohan et al. 1997). Several types of 
mapping populations that can be used to create a genetic 
linkage map: a population consisting of F2 plants, a back-
cross mapping population (from a backcross between an F1 
plant and one of the parents), a recombinant inbred map-
ping population (obtained by self-pollination of single F2 
individuals for at least six generations) or a double haploid 
mapping population (consisting of double haploids gener-
ated from pollen or embryos) (Collard et al. 2005). In terms 
of simplicity and time needed to create a particular map-
ping population, F2 mapping populations often seem to be 
the best choice. It is crucial for polymorphism identifica-
tion to choose appropriate markers that will allow the pro-
duction of a high-density map with the least possible effort. 
The genetic linkage map needs to be combined with a thor-
ough analysis of the phenotype for the trait of interest in 
the mapping population (known as phenotyping).

The results of previous QTL mapping studies of drought 
tolerance-associated traits in barley (Hordeum distichon 
L.) illustrate many problems in finding common regions 
responsible for drought adaptation (Teulat et al. 1998, 2001, 
2002, 2003; Baum et al. 2003; Diab et al. 2004; Comadran 
et  al. 2008; Guo et  al. 2008; von Korff et  al. 2008; Chen 
et  al. 2010). Most of the problems resulted from either 
different genotypes being studied under different envi-
ronmental and controlled drought conditions, or various 
drought tolerance indicators being used in phenotyping. 
Water deficit affects metabolism of the whole plant and, as 
a result many different physiological characteristics have 
been used as a measure of drought tolerance. The measures 
include, yield and growth analysis (Mathews et  al. 2008; 
von Korff et al. 2008), CO2 assimilation rate (Lawlor and 
Cornic 2002), PSII (photosystem II) photochemical activ-
ity (Oucarroum et al. 2007), leaf water conservation (Chen 
et al. 2004), plasma membrane integrity (Babu et al. 2004), 
osmotic adjustment or relative water content (Lilley et  al. 
1996; Teulat et al. 1998; Serraj and Sinclair 2002), carbon 
isotope discrimination (Teulat et al. 2002), and resistance to 
paraquat (Altinkut et al. 2003). The major challenge in phe-
notyping for drought tolerance is to choose a set of param-
eters, which can identify genotypes that are better adapted 
to drought events occurring in the local environment, and 
then to create a high-throughput phenotyping system that 
can describe this trait in the best way possible (Tuberosa 
2010; Mir et  al. 2012). Absolute values of drought toler-
ance parameters are needed to describe the drought toler-
ance level of breeding materials; whereas, relative val-
ues are sufficient to compare between materials, also in 
drought tolerance QTL studies (Teulat et  al. 1998, 2001). 
Relative changes of physiological parameters or traits 
(stressed/control) are widely used for comparing of toler-
ance/resistance to various stress factors between plants. For 

instance, relative changes of fluorescence parameters were 
used to arrange 30 soybean genotypes according to their 
chilling tolerance (Strauss et al. 2006). Dolstra et al. (1994) 
used similar method for evaluation of genetic variation of 
67 inbred maize lines for resistance to photoinhibition of 
photosynthesis. Therefore in this study, we used a rela-
tive measurement system to compare a number of known 
breeding lines in a gene pool already preselected for yield. 
The present study focused on the tolerance of spring bar-
ley seedlings to short-time drought, because spring water 
deficit events present major problem for barley produc-
tion in Poland (Budzyński and Szempliński 2003). It was 
found recently that different physiological characteris-
tics are responsible for variations in the early short-time 
drought tolerance observed in Polish malting and fodder 
barleys (Rapacz et  al. 2010). Parameters connected with 
drought-induced changes in cell membrane integrity, chlo-
rophyll fluorescence, and carbon assimilation rates were 
highly differentiated between malting barley genotypes; 
whereas plant water status and transpiration rates differed 
in the drought response of fodder barleys (Rapacz et  al. 
2010). In both groups of breeding material a large varia-
tion in drought response was also observed, which indi-
cates that it may be possible to select and combine different 
traits observed in Polish breeding barleys to improve their 
drought tolerance.

In the present study, we used QTL mapping to search 
for the genetic background of the variation in drought 
response observed by Rapacz et  al. (2010), both inside 
and between malting and fodder barleys. To address these 
goals, the progeny of malting and fodder barleys, which 
were selected as contrasting in terms of drought tolerance 
by Rapacz et al. (2010), were used to create two mapping 
populations. We developed a high-throughput phenotyping 
system to measure parameters correlated with cell mem-
brane stability, gas exchange, chlorophyll fluorescence, 
plant water status, and carboxylation intensity. For geno-
typing we used one of the most effective high-throughput 
genotyping platforms that are currently available, Diversity 
Array Technology (DArT) (Jaccoud et al. 2001).

Materials and methods

Plant material

Different patterns of physiological and molecular 
response to drought in malting and fodder barleys bred in 
Poland were reported in a previous study (Rapacz et  al. 
2010). In both groups separate physiological parameters 
were selected as the most differentiating between the 
drought-tolerant and drought-susceptible barleys. Thus, 
to study the genetic background of the different drought 
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tolerances, we created two segregating populations. Par-
ents with contrasting drought tolerance were chosen 
on the basis of previous study (Rapacz et  al. 2010). Two 
pairs of crossings were: STH836 (susceptible, malt-
ing, STH3600  ×  Blask)  ×  STH754 (tolerant, malting, 
Extract  ×  STH3901) and MOB12055 (susceptible, fod-
der, MOB2310/91 × WW7931) × STH369 (cv. Suweren, 
tolerant, fodder, Stratus × Annabell). Seeds were obtained 
from two Polish breeding companies, Strzelce Plant Breed-
ing (STH) and Danko Plant Breeding, Modzurow (MOB) 
branch. The high drought tolerance of the Suweren cultivar 
was confirmed by both company breeding data and farm-
ers’ opinion (Strzelce Plant Breeding 2012). The progeny 
of about 20 crossings made between single plants in each 
combination were used to generate of the F2 plants that we 
used for genotyping. The crossings, as well as the growth of 
the F1 plants, were performed in an air-conditioned green-
house. Single plants were grown in pots (ø16  ×  20  cm) 
filled with a mixture of universal garden soil substrate 
(Ekoziem, Jurkow, Poland) and sand (2:1, v:v). The plants 
were watered as required and fertilized up to the end of 
flowering with Florovit multipurpose fertilizer (Inco, Góra 
Kalwaria, Poland) according to the manufacturer’s instruc-
tions. The temperature was 25  °C/17  °C (day/night), the 
photoperiod was natural (parents, sown in early April) or 
14/10  h (day/night), and the irradiance was natural (par-
ents) or 400 μmol m−2 s−1 (HPS lamps, SON-T + AGRO, 
Philips, Brussels, Belgium). Single heads of F1 plants were 
bagged to secure self-pollination. In the case of the fod-
der barley population, over 200 of the seeds were obtained 
from a single F1 plant; thus this progeny was chosen for 
further study. In the case of the malting barley population, 
the number of seeds from a single plant was insufficient; 
therefore, the progenies of two F1 plants were used. In each 
of the two populations 183 F2 plants were genotyped. F2 
seeds were sown in an air-conditioned greenhouse in the 
middle of April, the temperature was 25  °C/17  °C (day/
night), with natural photoperiod and light intensity. The 
pots and plant care were the same as we used during F0 
and F1 growth. After collecting leaves for DNA isolation 
the pots were transferred to open-air conditions to gener-
ate F3 plants for phenotyping. Heads were bagged to ensure 
self-pollination.

Genotyping

DNA was isolated from the parental plants and plants of 
the F2 populations with DNeasy Plant Mini Kit (Qiagen, 
Hilden, Germany) according to the manufacturer’s instruc-
tions. The populations were screened with Diversity Array 
Technology (DArT) markers type Barley PstI(BstNI) ver-
sion 1.7. The high resolution array comprises 1,500 mark-
ers, which are polymorphic in a wide range of barley 

cultivars from all over the world, identified by surveying 
10,000 loci from a PstI(BstNI) genomic representation of 
cultivated barley accessions (Wenzl et al. 2004) and about 
1,000 markers identified by surveying 10,000 loci from a 
PstI(BstNI) genomic representation of wild barley acces-
sions. The positional information for some of polymorphic 
DArT markers was based on the barley integrated map 
(Wenzl et al. 2006). The maps were additionally saturated 
by 31 simple sequence repeats (SSR) and 32 sequence 
tagged sites (STS) markers obtained by DArT markers 
sequences conversion (Fiust 2011).

Genetic linkage map construction

The genotypic data for DArT markers were used to con-
struct genetic linkage maps with JoinMap 4.0 (Van Ooijen 
2006). Prior to map construction, structures of both map-
ping populations were checked with PAST software (Ham-
mer et  al. 2001), and segregation data were adjusted to 
remove sub-population bias. Marker linkage groups were 
selected at logarithm of odds (LOD) scores >3.0. The ini-
tial cluster groups that we obtained were subsequently 
merged at lower LODs on the bases of colinearity with the 
reference integrated map (Wenzl et al. 2006). Then, mark-
ers within the two groups were ordered using the maximum 
likelihood algorithm. Genetic distances between loci were 
calculated based on the Kosambi mapping function. The 
proposed sequence of markers was checked graphically 
and corrected by the replacement of single data of double 
crossing over with missing data. In the STH 754 ×  STH 
836 population, the average maximum number of recom-
binations per individual was 9.9 and ranged from 7.2 for 
the 1H chromosome to 13.2 for the 5H. Similarly, in the 
MOB12055  ×  STH369 population the mean maximum 
number of recombinations per individual was 9.3. Finally, 
the assignment of linkage groups on chromosomes was 
checked against the previously published barley consensus 
maps (Aghnoum et  al. 2010; http://www.wheat.pw.usda.
gov). Markers located at the same map positions were con-
sidered to be redundant and were shortlisted for clarity of 
the results. Further, bins of markers were identified with 
IciMapping (Wang et al. 2012a, b).

Phenotyping

Plant growth conditions and drought treatment

Drought response of the segregated populations was ana-
lyzed in F3 progeny obtained by self-pollination of the F2 
plants used for genotyping. Thirty seeds of each F3 line were 
sown in six pots (5 dm3) with a mixture of clay, peat, and 
sand (3/2/1, v/v/v). Plant growth occurred in growth cham-
bers with a fully controlled environment. During germination 

http://www.wheat.pw.usda.gov
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(four days in darkness) a constant temperature of 25 °C was 
maintained, after emergence during the next eight days the 
temperature was 25 °C/17 °C (day/night), with photoperiod 
14/10  h (day/night), irradiance of 400 μmol  m−2s−1 (HPS 
lamps, SON-T + AGRO, Philips), and 50  % air humidity. 
During their growth the plants were watered and fertilized 
once a week with Florovit (R) multipurpose fertilizer (Inco) 
according to the manufacturer’s instructions. Up to the four-
leaf stage (18 days after emerging), soil water content was 
kept at 70  % maximum water capacity by every day add-
ing of an appropriate amount of water. After this the water-
ing was stopped and the maximum water capacity decreased 
gradually, reaching 32 % after 7 days, which was measured 
with HydroSense Soil Water Content Measurment System 
(Campbell Scientific, Thuringowa Central, Australia). Under 
these conditions, leaves of all of the genotypes showed 
symptoms of turgor loss. Lines were sown sequentially on 
a daily basis: 6–7 lines with three pots per line (18–21 pots/
day equivalent to 270–315 plants/day). The remaining three 
pots from each line were a part of the second independent 
experimental series. The results from both experimental 
series were averaged and the number of replications indi-
cated in this paper represents the sum.

Measurements of physiological characteristics

All parameters were measured after the last watering (w) 
and at the end of the drought treatment (d). Stress indexes 
(SI) for each of the physiological parameters measured, 
were calculated as: SI (%)  =  (d/w)  ×  100  %, based on 
the stress indexes developed by Bouslama and Shapaugh 
(1984).

Plasma membrane integrity was determined by means 
of an electrolyte leakage (EL) test as described in detail by 
Rapacz et al. (2010). Measurements were performed on the 
first (the oldest) leaves in 12 replications (two from each 
pot in both experimental series).

Water relations in leaves were characterized by means of 
water content (WC = (FW−DW)/DW*100 %); FW, fresh 
weight; DW, dry weight). The measurements were done 
in 12 replications (two from each pot in both experimental 
series). Water content was measured in both populations, 
although no correlation of this parameter with other stress 
indexes, and no statistically significant effect of genotype 
on this parameter were observed previously in malting bar-
leys (Rapacz et al. 2010). On the other hand, in that study 
the difference in the water content stress index was statisti-
cally significant between parents (STH754 and STH836). 
Measurements were performed on the second leaves in 12 
replications (two from each of the three pots in both experi-
mental series).

The net photosynthetic rate (A) was measured in the 
middle part of the third leaf using an infrared gas analyzer 

(Ciras-1, PP Systems, Hitchin, UK) and Parkinson leaf 
chamber (PLC6), as described elsewhere (Rapacz et  al. 
2010). The controlled measuring conditions were: CO2 
concentration of 400 μmol (CO2) mol−1 (air), 30 % rela-
tive humidity, irradiance of 500 μmol (quanta) m−2 s−1 and 
the leaf temperature of 25 °C. The measurements were per-
formed in 10–12 replicates (five-six for each experimental 
series). To estimate the quantum yield of CO2 (ΦCO2), A 
was divided by the absorbed light intensity (PAR × 0.84). 
Photochemical efficiency was estimated by means of chlo-
rophyll a (Chl) fluorescence measurements. Measurements 
were taken in the middle part of the third leaf using either a 
modulated fluorescence system FMS2 or a fast chlorophyll 
fluorescence induction kinetics fluorymeter Handy PEA 
(Hansatech, Kings Lynn, UK), as previously described 
in detail (Rapacz et  al. 2010). Fluorescence induction 
kinetics was measured only in the malting barley popula-
tion because neither statistically significant differences 
between parents nor a correlation with other parameters 
was observed in the group of fodder barleys, as discussed 
previously (Rapacz et  al. 2010). After light adaptation of 
the leaf (about 5 min at 500 μmol (quanta) m−2 s−1 when 
the fluorescence signal (Fs) became constant), the FMS2 
system was used to calculate the following parameters: 
(1) the PSII antenna trapping efficiency (F′v/F′m,) where 
F′v  =  F′0–F′m (F′0 is the chlorophyll fluorescence yield 
when all of the PSII reaction centers and electron acceptor 
molecules are fully oxidized in a light adapted leaf, and F′m 
is the maximum fluorescence yield in a light adapted leaf); 
(2) the photochemical light energy quenching coefficient 
(qP) as qP  =  (F′m–Fs)/(F′m–F′0) according to Schreiber 
et al. (1986); and (3) the quantum yield of electron trans-
port at PSII as ΦPSII = (F′m–Fs)/F′m (Genty et al. 1989). 
The measurements were performed in 12 replicates (six in 
each experimental series). The induction of a chlorophyll 
fluorescence signal was measured after 30 min of leaf dark 
adaptation in clips (Hansatech). The following parameters 
were calculated based on the theory of energy flow in 
PSII and using the JIP-test (Strasser and Tsimilli–Michael 
2001). The energy absorbed in PSII antennas (ABS/CS), 
trapped in PSII reaction centers (TRo/CS), used for elec-
tron transport (ETo/CS) and dissipated from PSII (DIo/CS), 
as well as the maximum number of active reaction centers 
(RC/CSm), was calculated per excited leaf cross section 
(CS) together with the overall performance index of PSII 
photochemistry (PI). The measurements were performed in 
22–25 replicates (11–13 for each experimental series).

QTL analysis

The distribution of the physiological characteristics data 
were checked and, in most of the cases, the normal distri-
bution hypothesis (Shapiro–Wilk test, p  =  0.00001) was 
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not rejected. For  %EL and ΦPSII/ΦCO2 before the analy-
sis, data were further normalized by log10 (x +  1) (Shen 
et  al. 2006). Composite interval mapping (CIM) analysis 
was performed using the QTL Cartographer 2.5 software 
(Wang et al. 2012a, b). After performing a 1000 permuta-
tion test, a LOD threshold of 2.5 was set to declare a QTL 
as significant. A walk speed of 1.0 cM was chosen for all 
QTL detections. QTL effects were estimated as the pro-
portion of phenotypic variance (R2) explained by the QTL. 
QTLs were considered as minor or major, by defining a 
major QTL as a QTL that explained more than 15 % of the 
phenotypic variance in a primary genetic analysis (Salvi 
and Tuberosa 2005).

Results

Phenotyping

Drought stress indexes for the physiological parameters 
studied were highly differentiated both between parents 
and in the segregating populations (Table 1). The biggest 
diversity was observed in EL, A and ΦPSII/ΦCO2 in both 
of the populations. The values of most of the measured 
parameters were not distributed evenly in the mapping 
populations. In both of the populations ΦPSII/ΦCO2 was 

a parameter which distribution was most skewed to the 
right (in the direction of high values) which means that 
it could be useful for discarding of susceptible to drought 
genotypes in the process of selection (electronic sup-
plementary materials, Fig. S11–30). In malting barley, 
the drought-tolerant parent (STH754) was less affected 
by drought than the susceptible parent in all the studied 
parameters, with the exception of water content where 
this difference was not statistically significant (Table  1). 
In fodder barley, the values of the parameters studied 
were significantly less affected by drought in four out of 
seven cases.

Genotyping

DArT markers for 183 individuals of the STH 754 × STH 
836 population and parents were scored for segregation 
on a panel of 2500 PstI(BstNI) genomic representations 
of barley. Genotyping of the STH754 × STH836 malting 
barley population revealed 373 polymorphic DArTs; 301 
of them were polymorphic between parents, and two vari-
ant phases were tested for the remaining 72 markers. The 
distribution of genotypes across the principal coordinates 
suggested the presence of two subpopulations correspond-
ing to progenies obtained from two independent crosses. 
In the course of the mapping, 45 markers monomorphic 

Table 1   Values of SI (%) calculated for physiological parameters characterizing drought response of the studied mapping populations (F3 lines) 
of malting and fodder barleys together with the values observed in parents

SI values represent the  % of the parameter value in drought relative to the value measured before drought. Please consider that in the case of 
EL, ΦPSII/ΦCO2 and DIo/CS higher values of the parameter means higher drought susceptibility, whereas in the remaining cases higher toler-
ance. The distribution of SI values in segregating population was always normal according to Shapiro–Wilk test (P = 0.05) with the exception 
of SI for ΦPSII/ΦCO2. SI values for tolerant parents indicated with the asterisk are significantly different than for susceptible one according to 
Mann–Whitney’s U test (the mean for genotype before drought was used for calculation of SI independently for each replication during drought) 
for P = 0.05

Physiological 
parameter

Malting barley Fodder barley

Tolerant parent Susceptible parent F3 lines Tolerant parent Susceptible parent F3 lines

STH754 STH836 Min. Max. Mean Suweren MOB12055 Min. Max. Mean

WC 101.0 99.4 91.5 100.9 96.6 99.6* 96.8 93.9 101.1 97.4

EL 102.0* 387.1 92.1 1171.2 446.2 130.4* 280.8 142.4 1428.1 561.2

A 13.7* 8.8 1.2 20.8 9.3 13.4 15.0 0.3 56.7 9.0

F′v/F′m 84.8* 76.5 71.9 100.1 87.5 84.3 83.1 73.3 94.0 82.7

qP 79.8* 66.9 50.8 96.8 80.0 83.4* 80.3 59.3 111.4 83.2

ΦPSII 84.7* 76.7 71.9 100.2 87.5 67.8 69.2 45.2 96.6 69.2

ΦPSII/ΦCO2 660.2* 742.0 469.2 7423.2 1664.4 500.1* 938.6 155.7 35858.3 2637.0

ABS/CS 72.5* 71.8 56.6 95.2 74.8 – – – – –

TRo/CS 67.4* 65.5 53.8 100.0 71.5 – – – – –

ETo/CS 54.5* 49.4 39.4 70.1 54.3 – – – – –

DIo/CS 89.9* 92.6 63.9 98.6 85.1 – – – – –

RC/CSm 70.9* 64.1 55.4 104.2 79.1 – – – – –

PI 33.4* 25.9 17.6 72.1 38.1 – – – – –
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within subpopulations were replaced with missing data, 
and 43 markers were deleted. Finally, 331 DArTs, four 
STS and three SSR markers that reduced to 295 unique 
loci were used to create a 1226 cM long genetic map for 
STH754  ×  STH836 malting barley (Fig.  1). Similarly, 
a1362  cM long genetic map was constructed for fodder 
barley Suweren  ×  MOB12055 based on the segregation 
of 423 DArT, six STS and two SSR markers representing 
330 loci (Fig.  2). First, we obtained segregation data for 
452 DArT markers including 392 markers polymorphic 
on parental forms and 60 markers of unknown phase. For 
both populations, the order of the markers on the map was 
in perfect agreement with the reference data. Although 
the markers were not evenly distributed on the chromo-
somes, they covered the chromosomes with a density of 
4.16 and 4.13 cM/marker for the malting and fodder bar-
ley, respectively, providing a good framework for the sub-
sequent QTL mapping. The two mapping populations had 
120 DArT markers in common. Clusters of markers were 
in agreement between the two maps, and only minor dif-
ferences in marker order were found on chromosomes 6H 
and 7H.

QTL analysis

The CIM analysis for the malting barley mapping popu-
lation revealed 18 QTLs (15 minor and 3 major) for nine 
physiological traits among all of the chromosomes except 
1H (Table 2, Fig. 1). For the fodder barley population, 15 
QTLs (14 minor and 1 major) for five physiological traits 
were found on chromosomes 2H, 4H, 5H and 6H (Table 3, 
Fig. 2). In both populations the 4H and 5H chromosomes 
contained regions that explained most of the observed phe-
notypic variation in the parameters analyzed. No QTLs for 
the water content stress index were found in the malting 
barley population. In the fodder barley population, 4 QTLs 
for the water content stress index were detected on chromo-
somes 2H and 5H, explaining 37.35 % of the observed phe-
notypic variation with the largest contribution from mark-
ers bPb-1967 (2H) and bPb-5075 (5H) (Table 3). No QTLs 
for the drought-induced membrane damage (EL) or for the 
photochemical light energy quenching coefficient (qP) were 
detected in the malting barley mapping population, while 
four QTLs for EL and three for qP change were found in 
the fodder barley population (Table 3). On the other hand, 
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Fig. 1   Linkage map for 331 DArT, 4 STS and 3 SSR markers 
reduced to 295 unique loci based on 182 F2 plants derived from the 
cross between malting barleys: STH754 ×  STH836 and position of 
quantitative trait loci (QTL) for stress indexes (SI) of different physi-

ological characteristics. Genetic distances are shown in centiMor-
gans (cM) to the left of the vertical axis. Numbers in brackets refer to 
redundant markers
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Fig. 2   Linkage map for 423 DArT, 6 STS and 2 SSR markers rep-
resenting 335 loci based on 182 F2 plants derived from the cross 
between fodder barleys: Suweren  ×  MOB12055 and position of 
quantitative trait loci (QTL) for stress indexes (SI) of different physi-

ological characteristics. Genetic distances are shown in centiMor-
gans (cM) to the left of the vertical axis. Numbers in brackets refer to 
redundant markers
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the fodder barley QTL map lacked the QTLs for the F′v/F′m 
stress index, which were present on chromosomes 4H and 
5H in the malting barley map (Table 2). QTLs were found 
in both populations for net photosynthetic rate (A) and 
quantum yield of electron transport at PSII (ΦPSII). One 
major QTL (QA.sthb-5H), which explained 22.19 % of the 
observed phenotypic variation in A in the malting barley 
mapping population was located on chromosome 5H in the 
vicinity of markers bPb-4418 and bPb-0709 (Table  2). In 

the fodder barley population also, one QTL (QA.sthf-4H, 
area of marker bPb-8013) that explained 7.25  % of the 
observed phenotypic variation in A was detected, but this 
QTL was located on chromosome 4H (Table 3). Two QTLs 
(QPSII.sthb-4H and QPSII.sthb-5H), which explained 
17.79  % of phenotypic variation in drought-induced 
change in ΦPSII, were detected on chromosomes 4H and 
5H in the malting barley mapping population. The biggest 
effects originated from markers bPb-8101 and bPb-8822 

Table 2   QTLs for stress 
indexes (SIs) for different 
physiological traits 
studied in the mapping 
population of malting barley 
(STH754 × STH836); bold 
letters indicate major QTLs

a  QTL were detected with a 
minimum LOD score of 2.5 in 
at least one environment
b  Logarithm of odds (LOD) 
score
c  Additive effect of allele
d  Percentages of phenotypic 
variance explained by individual 
QTL

Trait Linkage group Flanking markers QTLa LODb Addc R2 (%)d

Gas exchange

 A 5H bPb-4418 QA.sthm-5H 2.64 2.247 22.19

bPb-0709 2.75 2.386 21.29

Photochemical activity of PSII

 F′v/F′m 4H bPb-3829 QFvFm.sthm-4H 2.51 −0.224 6.32

5H bPb-8101 QFvFm.sthm-5H 2.52 2.846 9.79

 ΦPSII 4H bPb-3829 QPSII.sthm-4H 2.56 −0.239 6.66

bPb-22105 2.57 −0.239 6.22

5H bPb-6967 QPSII.sthm-5H 2.53 3.467 8.03

bPb-3985 2.50 3.083 8.11

bPb-8101 2.71 3.094 11.13

bPb-8822 2.68 3.046 11.38

 ΦPSII/ΦCO2 6H bPb-20617 QPSII-CO2.sthm-6H 5.49 298.943 5.66

 ABS/CS 3H bPb-0285 QABS-CS.sthm-3H 2.87 −2.7187 8.23

bPb-2040 3.16 −2.709 8.29

Bmac209 3.18 −2.7247 8.24

bPb-2394 3.06 −2.7005 8.19

 ETo/CS 3H bPb-2040 QET.sthm-3H 2.62 −2.626 7.93

Bmac209 2.68 −2.6529 7.97

bPb-2394 2.64 −2.640 8.00

4H bPb-4240 QET.sthm-4H.1 2.58 −1.870 6.05

4H bPb-22105 QET.sthm-4H.2 2.59 −168.085 5.80

bPb-7987 2.63 −166.049 6.23

 DIo/CS 2H bPb-1967 QDI.sthm-2H 3.83 1.857 9.08

bPb-2948 3.70 1.789 8.25

5H bPb-3985 QDI.sthm-5H 2.56 −0.184 8.03

bPb-8101 3.07 −0.268 10.84

bPb-8822 3.14 −0.288 11.33

 RC/CSm 6H bPb-0572 QRC-CS.sthm-6H.1 3.46 0.000 7.33

bPb-4778 3.10 −2.727 7.13

6H bPb-6123 QRC-CS.sthm-6H.2 2.51 −3.063 5.09

 PI 3H bPb-2040 QPI.sthm-3H 2.78 −3.490 7.46

Bmac209 2.85 −3.515 7.67

bPb-2394 2.86 −3.498 7.85

4H bPb-4240 QPI.sthm-4H 2.60 −4.216 5.47

5H bPb-1813(1) QPI.sthm-5H 2.87 0.000 46.92

bPb-4418 2.92 0.000 43.33

bPb-0709 3.04 0.000 43.84

7H bPb-7345 QPI.sthm-7H 5.62 0.000 52.01



3029Theor Appl Genet (2013) 126:3021–3034	

1 3

on chromosome 5H (Table  2). Three QTLs for this trait 
were found in the fodder barley population on chromo-
somes 2H and 4H, and together they explained 27.76  % 
of the observed phenotypic variation in ΦPSII. Among the 
markers present in these regions marker bPb-8013 located 

on chromosome 4H contributed the most to the observed 
effect (Table  3). In addition, QTLs QPSII.sthm-4H in the 
malting barley mapping population and QPSII.sthf-4H.2 
in the fodder barley mapping population were located 
in the corresponding positions of 60.0  cM and 69.7  cM, 

Table 3   QTLs for stress 
indexes (SIs) for different 
physiological traits 
studied in the mapping 
population of fodder barley 
(Suweren × MOB12044); bold 
letters indicate major QTLs

Trait Linkage group Flanking markers QTLa LODb Addc R2 (%)d

Water relations

 WC 2H bPb-8949 QWC.sthf-2H 3.25 0.135 8.10

bPb-7160 3.78 0.716 9.64

bPb-9199(1) 4.59 0.748 10.08

bPb-1967 4.16 0.764 10.16

5H bPb-4760 QWC.sthf-5H.1 2.61 7.346 5.92

bPb-1757 2.79 7.338 6.23

bPb-9317 3.14 2.320 6.36

bPb-5307 2.84 7.347 6.16

bPb-4135 2.59 7.342 5.46

5H bPb-0393 QWC.sthf-5H.2 2.64 0.036 5.31

bPb-8589 2.89 0.097 6.03

bPb-6603 4.22 0.254 9.04

bPb-7881 4.44 0.273 9.47

scssr02503 4.00 0.248 7.87

bPb-2762 3.66 0.187 7.54

bPb-1285 3.10 0.102 6.56

bPb-7217 2.55 1.108 5.32

bPb-5075 QWC.sthf-5H.3 3.25 0.330 11.36

Membrane integrity

 EL 5H bPb-3681 QEL.sthf-5H.1 2.80 −122.887 5.59

bPb-4760 3.01 0.000 7.38

bPb-1757 3.17 0.000 7.83

bPb-9317 3.31 0.000 7.16

bPb-5307 2.97 0.000 6.97

bPb-4135 2.77 0.000 6.14

5H bPb-6603 QEL.sthf-5H.2 4.19 −101.903 9.27

bPb-7881 3.53 −90.423 8.08

scssr02503 2.90 −69.031 6.07

bPb-2762 3.13 −73.352 6.71

bPb-1285 3.19 −82.241 6.94

bPb-7217 3.07 0.000 6.99

6H bPb-5310 QEL.sthf-6H.1 2.47 −94.089 5.61

bPb-4369 3.07 −110.376 7.28

bPb-6721 3.10 −106.096 6.96

bPb-3230 2.84 −103.295 6.39

bPb-6721 K 2.94 −106.068 6.65

bPb-8347 3.14 −104.703 7.08

bPb-6735 K 3.15 −103.251 7.06

bPb-3773 3.17 −103.655 7.21

6H bPb-5885 QEL.sthf-6H.2 2.52 5.001 6.27

bPb-7877 2.68 4.561 6.17

Gas exchange

 A 4H bPb-8013 QA.sthf-4H 2.93 −3.315 7.25
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respectively on the consensus reference map (Tables 2 and 
3; Figs.  1 and 2). QTLs for the chlorophyll fluorescence 
parameters that describe energy flows and energy transfer 
efficiencies in PSII (JIP-test parameters) were mapped only 
in the malting barley population. On chromosomes 3H, 
4H, 5H and 6H these QTLs overlapped or co-located either 
with the QTLs for other JIP-test parameters or with QTLs 
for chlorophyll fluorescence parameters as measured by 
gas exchange. In addition, QTL QPI.sthm-5H overlapped 
with the net-assimilation rate QTL QA.sthm-5H. PI, which 
characterizes the overall performance index of light energy 
use in PSII seems to be controlled by two main genes, 
one on chromosome 5H (QPI.sthm-5H), which explained 
46.92 % of the observed phenotypic variation (marker bPb-
1813(1)), and the other on chromosome 7H (QPI.sthm-5H), 
which explained 52.01 % of the observed variation (marker 
bPb-7345). However, two additional QTLs with smaller 
effects were found on chromosomes 2H and 3H.

Further, two regions that correlated with drought toler-
ance were common for both mapping populations; how-
ever, they were located on chromosomes 2H and 6H that 
controlled different traits in each population. The vicinity 
of marker bPb-1967 on chromosome 2H was related to 
drought-induced water content change in the fodder barley 
mapping population, whereas in the malting barley popula-
tion it was connected to changes in DIo/CS, a parameter 
that described PSII photochemical activity. The second 
region that was common for both populations was located 

on chromosome 6H and flanked by markers bPb-5190 
and bPb-2957. This region was related to changes in RC/
CS in malting barley and in ΦPSII/ΦCO2 in fodder barley 
(Figs.  1 and 2). Neither QTLNetwork (Yang et  al. 2008) 
nor IciMapping (Wang et al. 2012a, b) revealed significant 
interactions (LODs ranged from 3.7 to 19.7) between QLTs 
that were identified using the CIM procedure of QTL Car-
tographer 2.5 (Wang et al. 2012a, b).

Discussion

Over the last decade, barley has been the subject of exten-
sive mapping studies with the DArT technology. A total of 
2,032 DArT markers have been mapped to 646 unique posi-
tions (bins) in Hordeum chilense recombinant inbred line 
(RIL) population (Rodríguez-Suárez et al. 2012). The map 
based on segregations in progeny from a cross of the Igri 
and Franka cultivars representing separate gene pools of 
two- and six-rowed barley contained 527 DArTs (Sharma 
et al. 2011). The numbers of DArT bPb markers in double 
haploid and RIL populations that were used for consensus 
mapping varied from 257 to 530 (Wenzl et al. 2006). Alsop 
et  al. (2011) reported similar numbers of mapped DArT 
loci in four populations of barley. The number of markers 
varied from 620 to 551 and number of bins was between 
240 and 182, respectively. Based on these findings, we have 
mapped 88.7 and 93.6 % of the primary polymorphic DArT 

a  QTL were detected with a 
minimum LOD score of 2.5 in 
at least one environment
b  Logarithm of odds (LOD) 
score
c  Additive effect of allele
d  Percentages of phenotypic 
variance explained by individual 
QTL

Table 3   continued Trait Linkage group Flanking markers QTLa LODb Addc R2 (%)d

Photochemical activity of PSII

 qP 2H bPb-1051bK Qqp.sthf-2H 2.82 4.180 5.85

bPb-1415 2.72 4.281 5.68

bPb-4232(2) 2.79 4.775 5.80

bPb-7434 3.05 4.996 6.43

bPb-9520 3.46 5.437 7.13

bPb-6048 3.48 5.493 7.20

bPb-6280 3.49 5.487 7.23

bPb-7212(1) 2.87 4.788 5.96

4H bPb-1408 Qqp.sthf-4H.1 4.00 6.480 8.66

4H bPb-8013 Qqp.sthf-4H.2 5.81 −6.381 15.13

 ΦPSII 2H bPb-1415 QPSII.sthf-2H 2.96 4.924 6.25

bPb-4232(2) 2.80 5.104 5.93

bPb-7434 2.99 5.267 6.39

bPb-9520 3.32 5.660 7.02

bPb-6048 3.40 5.738 7.27

bPb-6280 3.41 5.733 7.31

bPb-7212(1) 2.90 5.104 6.13

bPb-4601 2.90 5.086 6.22

4H bPb-1408 QPSII.sthf-4H.1 3.08 6.184 6.60

4H bPb-8013 QPSII.sthf-4H.2 5.26 −6.90 13.85
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markers in the malting and fodder barley breeder popula-
tions, respectively, resulting in initial genetic maps built of 
338 and 355 bin markers. However, a further reduction of 
markers with the highest number of missing data was still 
possible in these populations, resulting in 163 and 211 bins 
in the malting and fodder barley populations, respectively. 
In previous mapping studies of barley, 457 of 557 DArT 
markers (83  %) were used for genetic map construction 
(Grewal et al. 2008).

The high efficiency of mapping markers is of para-
mount importance in species that have a variable genomic 
constitution and possible chromosome rearrangements. In 
the genetic map of triticale, only 6 % of the predominant 
DArT markers remained unmapped (Tyrka et al. 2011). At 
present, DArT, as a system of choice for the generation of 
high-density maps, and new sequencing based technologies 
have evident advantages over hybridization-based DArT 
arrays (Poland et  al. 2012). DArT markers are dominant, 
which in a hybridization-based system may lead to erro-
neous analysis of missing data, allele absence, and pres-
ence of ‘null’ alleles. Genotyping errors can be partially 
recognized as “singletons” during the mapping procedure 
and replaced by missing data. In comparison to new gen-
eration genotyping by sequencing systems in barley, DArTs 
have limited sequence information and 2000 bPb markers 
are publicly accessible. In association studies the biallelic 
DArT markers may result in more spurious associations 
than multiallelic markers.

Mapping of QTLs on segregating populations derived 
from breeding lines should result in the identification of 
loci, which are important for improvement of lines, but 
may suffer from incomplete homozygosity of parental 
lines and narrow genetic distances. These factors may also 
cause insufficient marker density in selected chromosomal 
regions. In spite of the large gaps that are present in the 
genetic maps of malting and fodder barley, conservation 
of the order of the loci with respect to the consensus map 
allows comparative localization of QTLs to be performed. 
However, insufficient saturation with markers may result 
in some important regions containing QTLs being missed. 
QTL mapping on an F2 population and later on recombi-
nant inbreed lines resulted in the identification of additional 
QTLs in population of RILs (Myśków et al. 2012).

The genetic and phenotypic variations observed in the 
mapping populations that were created for the present 
study were enough to create high-density linkage and QTL 
maps. The newly constructed maps confirmed the accuracy 
of the selection criteria for early short-term drought toler-
ance in spring barleys previously proposed by Rapacz et al. 
(2010) and implemented in our study to choose parents for 
the populations. The average distance between loci was 
4.16  cM for the malting and 4.03  cM for the fodder bar-
ley map. The average distance between the loci in the other 

populations that were mapped for drought tolerance QTLs 
was considerably larger; for example, 12.2 (Diab et  al. 
2004) and 14.5 cM (Teulat et  al. 1998). The high density 
of the genetic maps that were created in this study showed 
that there was large genetic diversity and variation in the 
analyzed phenotypic traits, in spite of the fact that all the 
breeding strains studied were bred in Poland and originated 
from middle and northern European cultivars [six Polish, 
one German (Annabell), and one British (Extract)]. The 
obtained high density of the maps was also the result of 
our choice of marker system, namely, the large number of 
markers that we tested; about 2,500 (http://www.triticarte
.com.au). No other marker system currently available can 
compete with this high number of markers. The degree of 
genetic diversity, as well as the diversity in drought-related 
traits that we observed for the mapping populations in this 
study, are similar to the degrees of diversity reported in 
other popularly used mapping populations; for example, 
double haploid population Proctor × Nudinka (Heun et al. 
1991), double haploid population Steptoe × Morex (Klein-
hofs et  al. 1993), and the recombinant inbred population 
Tadmor × Er/Apm (Teulat et al. 1998, 2001).

The diversity of the phenotypic traits that we observed in 
the mapping populations of in the present study indicated 
that the sources of drought tolerance, which already existed 
in the Polish breeding materials of barley, were enough for 
the improvement of their tolerance to the spring droughts 
that frequently occur in Poland. Therefore, there is no need 
to search for external sources of drought tolerance in, for 
example, wild barley relatives or in local cultivars grown in 
a dry environment. Cattivelli et al. (2008), in their review 
of the improvement of drought tolerance in crops, stated 
that the biggest challenge for plant breeders is to introduce 
QTLs, which were obtained for a given mapping popula-
tion into high-yielding elite genotypes. The results of our 
study suggest that an alternative approach based on the 
creation of mapping populations from high-yielding geno-
types adapted to local conditions may be effective. There-
fore, either advanced breeding lines or cultivars could be 
used. This approach is likely to accelerate breeding; first, 
because of the high correlation between drought toler-
ance, and yield (Comadran et al. 2008), and grain quality 
(Rapacz et al. 2010) and, second, because of the substantial 
influence of the environment. The high impact of local con-
ditions on drought tolerance traits was shown for the cross 
between tolerant to drought Tadmor and Er/Apm (adapted 
only to specific dry conditions) mapping population men-
tioned above, tested in four different locations over four 
years (von Korff et al. 2008).

A precise comparison between different barley QTL 
maps is, of course, impossible because of the high speci-
ficity of the physiological and molecular determinants of 
drought tolerance which depend on the analyzed gene pool 

http://www.triticarte.com.au
http://www.triticarte.com.au
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and environmental conditions. The gene pool of Mediter-
ranean barley is perhaps the best described in terms of 
QTLs for drought tolerance. Diab et al. (2004) determined 
several QTLs for osmotic adaptation, relative water con-
tent, and leaf osmotic potential in the Tadmor × Er/Apm 
mapping population. The QTLs were located on all of the 
chromosomes, but mostly on 3H and 5H. In the same map-
ping population, Teulat et  al. (1998) found QTLs which 
explained most of the observed variation in traits relating to 
plant water status on chromosome 6H. In the present study, 
we found QTLs for these traits were determined only in the 
fodder barley mapping population and on chromosomes 2H 
and 5H. The differences in QTL distribution and the per-
centage of explained phenotypic variations on various QTL 
maps of the different barley cultivars resulted mostly from 
genotype × environment interactions, which are known to 
greatly affect quantitative traits.

Genotype  ×  environment interactions make it difficult 
to compare drought tolerance QTLs that have been deter-
mined under different environmental conditions and for dif-
ferent genotypes. However, we found some QTL regions 
that were common for the malting and fodder barley maps 
as well as for barley QTL maps that published previ-
ously. Common regions on the malting and fodder barley 
maps were located on chromosomes 2H, 4H and 6H. Of 
the QTLs that overlapped in both populations, the largest 
number was on chromosome 4H and most of these over-
lapping QTLs were for photochemical efficiency of PSII. 
In other studies, QTLs correlated with drought tolerance in 
barley were also found on chromosomes 2H, 4H and 6H; 
for example, QTLs for chlorophyll fluorescence induction 
kinetics, days to heading, plant height (von Korff et  al. 
2008), grain yield (Comadran et al. 2008, von Korff et al. 
2008) and osmotic adjustment (Teulat et  al. 1998, 2001). 
What is more, in the fodder barley mapping population, we 
found that co-localizing QTLs for leaf water content and 
electrolyte leakage were located together on the chromo-
some 5H in a region that harbors the HVABI5 gene that 
is involved in plant response to abscisic acid (Tondelli 
et  al. 2006). In the malting barley mapping population 
also, we found overlapping QTLs for chlorophyll fluores-
cence parameters on this chromosome (5H). Many studies 
for different traits have reported the location of different 
genes and QTLs in the same chromosomal regions (2H, 
4H, 5H, and 6H) suggesting that these regions are corre-
lated with barley’s response to drought irrespective of line/
cultivar, origin, or environmental conditions. Therefore, 
the genetic background of drought tolerance is, in a broad 
sense, probably the same for barley as a species, while 
the role of particular genetic determinants in the expres-
sion of drought tolerance observed between genotypes 
depends on the gene pool and local environmental condi-
tions. In the present study, these trends were also observed. 

Although many different QTLs were found for each map-
ping population, the presence of common regions in the 
chromosomes of the studied barleys confirmed that there 
was a similar background of spring drought tolerance in 
these populations. In the fodder barley population, QTLs 
that explained most of the observed phenotypic varia-
tion for leaf water content were identified, whereas, in the 
malting barley mapping population, no QTL for drought-
induced changes in plant water status was found. What is 
more, among the three chromosomal regions correlated 
with drought tolerance that were common to both mapping 
populations, two of the regions were for different traits in 
the two populations. One region was for QTLs related to 
PSII photosynthetic activity stress index in malting barley, 
and the corresponding region in fodder barley was related 
to the water content stress index. These results confirm the 
observations made by Rapacz et al. (2010) that the differ-
ences in a drought-induced decrease in leaf water content 
represented one of the main elements of the differential 
drought response observed among fodder barley genotypes, 
whereas the differences were not significant among malting 
barley genotypes. On the contrary, stress indexes connected 
with drought-induced changes in energy fluxes and their 
efficiencies inside PSII (JIP-test parameters) were different 
only between malting barley genotypes. Therefore, it can 
be assumed that the same genetic determinants with puta-
tive regulatory functions may cause different changes in 
phenotype when acting in a different genetic background.

In conclusion, the wide diversity in drought tolerance 
among advanced barley breeding lines indicates the pos-
sibility of selection for early short-term drought tolerance 
within Polish spring barleys. For QTL analysis, an effective 
approach for the further evolution of functioning marker 
systems to improve the drought tolerance of barley, may 
be, first, to create separate mapping populations for locally 
adapted gene pools for different breeding directions (for 
example, for malting and fodder barleys), and, then, to 
phenotype the well-recognized physiological character-
istics that are responsible for variations in drought toler-
ance among the studied genotypes and under local condi-
tions. This approach should to be both a fast and easy one 
when using high-throughput genotyping and phenotyping 
methods.
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